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Analyticity Properties of Helicity Amplitudes and Construction of Kinematical 
Singularity-Free Amplitudes for Any Spin* 
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The analyticity properties of helicity amplitudes for binary reactions of particles with arbitrary spins are 
studied using the following three properties: (i) the analyticity properties of scattering amplitudes, assuming 
these are correctly predicted by perturbation theory; (ii) the crossing relations of helicity amplitudes near 
s=0; (hi) the threshold behavior of partial-wave amplitudes. Making use of these properties, kinematical 
singularity-free amplitudes for any spin are constructed by modifying helicity amplitudes. MacDowell 
reciprocity is generalized to arbitrary spin. Helicity amplitudes are proved to satisfy the Froissart limit 
at the high-energy limit. 

I. INTRODUCTION 

TH E 5-matrix theory of strong interactions is based 
on the analyticity properties of scattering ampli

tudes.1 Among various kinds of amplitudes, the helicity 
amplitude introduced by Jacob and Wick2 is most 
convenient for practical applications. Until now, if one 
wanted to know the analyticity properties of helicity 
amplitudes, one had to look for the linearly-independent, 
Lorentz-invariant scalars built up from the four-
momenta and spin parameters of the external particles, 
the coefficients of which are free from kinematical 
singularities and satisfy the Mandelstam represen
tation. (Here, the spin parameters include Dirac 
matrices, polarization vectors, and fermion spinors.) 
Then, one had to know the relation between helicity 
amplitudes and these coefficients. This has been done 
for 7T7T, TN, and NN scatterings3,4 and their crossed 
reactions.4'6 For more complicated scattering problems, 
a prescription for finding kinematical singularity-free 
amplitudes has been given.6 However, it is not easy to 
follow the prescription. For example, it was difficult 
even for NN scattering. Therefore, this indirect method 
will not be used in the following. Instead, we will 
investigate the analyticity properties of helicity ampli
tudes from the beginning. 

As will be shown in the following, the analyticity 
properties of helicity amplitudes are not so complicated 
for simple scattering problems.7 

For irN scattering2,3 

/+.+=cos(0/2)[2M~A + {W2~M2-ix
2)B~]J 

f+,^sm(d/2)[_(W2+M2-fx2)A (1.1) 
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f On leave of absence from Physics Department, Tokyo Uni
versity of Education, Tokyo, Japan. 

1 See, for example, G. F. Chew, S-Matrix Theory of Strong 
Interactions (W. A. Benjamin and Company, Inc., New York, 
1961). 

2 M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959). 
3 G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu, 

Phys. Rev. 106, 1337 (1957). 
4 M . L. Goldberger, M. T. Grisaru, S. W. MacDowell, and 

D. Y. Wong, Phys. Rev. 120, 2250 (1960). 
5 W. R. Frazer and J. R. Fulco, Phys. Rev. 117, 1603 (1960). 
e A. C. Hearn, Nuovo Cimento 21, 333 (1961). 
7 Note a difference by a factor of (spi/p/)1/2 in our definition of 

helicity amplitudes [see Eq. (2.4)]. In our definition, the helicity 
amplitude for mr scattering satisfies the Mandelstam 
representation. 

B 

+ {W2~-M2+IJ2)MB']W-1. 

For NN scattering4 

* ( / + + . + + - / + + . - ) -E2Gx~zfG^m2G,, 

i ( / „ , + * + / + + . - ) = (E2G2+tn2Gt)z-p2G,, 

* [ ( 1 + « ) - 1 / H - . + - - ( l - a ) - 1 / + - . - + ] = -jXh, 

(s=cos0), (1.2) 

hL^+z)-lU^+-+{l^z)-'U-,~^-ni2G,+E2G^ 
(m/y)U+>+^= ~m2E(G2+G,), (y= sinfl). 

For the xx —> NN process5 

/++, = [ - 2pA + 2mqB costf], 

f+-=2EqBsmd. (1.3) 

Readers will see from Eqs. (1.1) to (1.3) that the 
modified helicity amplitude, 

Axcx(l,xaX5=[cos(^/2)]-l^l[sin(d/2)]Hx-/.l 

XS~* /2/xcXd)XaX&, 

[X = Xa-X& , M = X c - X d , £ = 0 ( o r l ) (1.4) 

if Xa—Xfe—Xc+Xd is even (or odd)] , 

satisfies the Mandelstam representation if we neglect 
possible (kinematical) poles at s==0 and p~0. We can 
get rid of these by multiplying Eq. (1.4) by s rand p2L 

(f and L can be predicted). 
The amplitude (1.4) does not satisfy the Mandelstam 

representation in general. However, it will be shown 
that we can modify helicity amplitudes for any spin in 
such a way that the modified amplitudes satisfy 
Mandelstam representations. A list of kinematical 
singularity-free amplitudes will be given in Sec. VII. 
Making use of this result, a generalized MacDowell 
reciprocity will be proved in Sec. V. Helicity amplitudes 
for any spin will be proved to satisfy the Froissart limit 
at high energies (Sec. VI). 
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II. ANALYTICITY IN COSO AND IN t 

In the following, we assume that the analyticity 
properties of scattering amplitudes are correctly pre
dicted by perturbation theory. Then it has been shown6 

that the amplitudes of binary reactions a+b^ c+d 
can be written as8 

T=ZBj(s)tJu)Nj(pM, (2.1) 
3 

where T is related to the corresponding S-matrix 
element through 

(pcpd\S-l\papb)= (27r)Hd4(pc+pd-pa~pb) 
X(pa°piPpc0pcP)~ll2T. (2.2) 

B^SjtjU) is an analytic function of s, t, and u and 
satisfies the Mandelstam representation. N,(pifii) is a 
polynomial in the four momenta of the external par
ticles pi and spin parameters ft which include Dirac 
matrices, fermion spinors, and polarization vectors. 

The expectation value of (2.1) between helicity states 
in the center-of-mass system of the s channel (helicity 
amplitudes) can be written as 

7\cXd,x0x6=Z J3/(j,/,«)[Polynomial in^»°, p2, 
3 

p'2, pp', sin(6/2) and cos(0/2)][>* or p'\\ 

X I I lpiQ+nii~]-112- (2.3) 
*: fermion 

In deriving (2.3) we have made use of the fact that the 
helicity states are linear combinations of direct products 
of e\lx(p) and u\(p) (X stands for helicity and /z is a 
Lorentz index), where 

€i"(/0= (0; cos0, i, -s in0) /V2, 

eolx(p)=(p; p° smd,0,p° cos6)/m, 

e_i"(/0 = (0; - cos0, i, sin0)/v2, 

UI/2(P) = L(P°+M) cos (0 /2 ) , ( /+m) sin(0/2), 

p cos(d/2),p sin(d/2)X2m(p°+m)']~l/2
J 

u^,2(p)^l-{p"+m) sin(0/2), (p+m) cos(0/2), 

p sin(0/2), -p cos (0/2)] 

XpwC^+w)]-1 '2, 

for p»= (p°,p sindfi,p cos0). For example, the helicity f 
state of a spin f particle is eiUi/2. 

The helicity amplitude, T\e\d,\a\h, in (2.3) is related 
to the conventional helicity amplitude of Jacob and 
Wick2 through 

ZM,,xax6= 27r(sp/pfy^cXd,^b(da/d^ \ f\*) . (2.4) 

In (2.3), p%° is the energy of the particle i in the center-
of-mass system of the s channel, p(p') is the momentum 
of the initial (final) particles in the center-of-mass 

8 S= (Pa+Pb)2= (Pe+Pd)\ t= {Pa-Pc)2~ (pb-pd)2, a n d 
U=(pa-pd)*=(pb-pe)*. 

H A R A 

system of the s channel, 0S is the scattering angle in the 
center-of-mass system of the s channel, and 

p2= Is- (nta+mh)
2J_s- (ma-mb)*y (4s), (2.5) 

and 

cos0=[2<r/+52—sj^ m^Jr(ma
2—mh

2)(m^—mi)'] 
i 

x^spp')-1-

In (2.3), 77 = 0 (or 1) if r}ar)br}cr]d=l (or —1) due to the 
P invariance of the strong interactions.9 

Next let us consider the following amplitude: 

n c x d ,x a x/=[cos(0 /2) ] - l^ l [ s in(0 /2) ] - l^ i rx c x d ) x a x 6 

(X=Xa—X& and ju=Xc—Ad). (2.6) 

This amplitude has been shown10,11 to depend on cos0, 
but not on cos (0/2) and sin (0/2). Then, we can write 
it as 

rxcxdlXax/ = L 5;(s ,^)[Polynomial in pf, p2, 
3 

X II lpi°+mi2-^. (2.7) 
i: fermion 

Hence, we have found that for fixed real s, V is analytic 
in the cos0 plane with cuts on the real axis. Since cos0 
is linear in /, we have also found that V is analytic in 
the cut t plane (for fixed s) with cuts1 (tm\n,co) and1 

(— oo 7 J2% wii2—s—umin). Therefore, we have only to 
study the analyticity properties of helicity amplitudes 
as functions of s. 

III. ANALYTICITY IN s; GENERAL CASE 

Thus far, we have only considered the helicity ampli
tude for the s reaction (T*e\d,\a\b

8). As has been shown 
in the previous section, the helicity amplitudes for the 
I reaction (7\cxd,xox&0 n a s n o kinematical singularities 
in s if it is divided by 

Ccos(0,/2)]~lx+^[sin(0,/2)]-l^i. 

Crossing relations between helicity amplitudes in the 
s channel, T8y,pa8, and helicity amplitudes in the t 
channel, TV^,^^*, have been proposed by Trueman 
and Wick12 and by Muzinich.13 According to Trueman 
and Wick,14 

9 f]i is defined in Ref. 2. 
10 M. Gell-Mann, M. L. Goldberger, F. E. Low, E. Marx, and 

F. Zachariasen, Phys. Rev. 133, R145 (1964). 
11 F. Calogero, J. Charap, and E. Squires (to be published); 

F. Calogero and J. Charap, Ann. Phys. (N. Y.) 26, 44 (1964). 
12 T. L. Trueman and G. C. Wick, Ann. Phys. (N. Y.) 26, 322 

(1964). 
1 3 1 . Muzinich (to be published). 
14 A proof based on Muzinich's relations can be given in the 

same way. 
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(s+ma
2—mb2)(t+ma

2—mc
2) + 2ma

2(mb2—ma
2+mc

2—md
2) 

COSXpa = 

{s+mh
2—m^)(t+mb

2~md
2)+2mh

2{m^~mh
2+md

2—mc
2^ 

±ppt'(sty» 

siml/a=map/ sin6t/s
ll2p, 

sin\f/h=mbpt smdt/s
ll2p, 

pt- [t- (ma+mc)
2Ji2£t~ (ma~-mc)

22m/2l^, 

p/=\j- (f»5+Wd)2]1/2D- imh~-md)
2y2IW2, 

cosdt=-l2sL+t2-tZ m^{m2-m2){mh
2-mi)~\{UptplYl. 

At first, let us consider the general case. (We assume any two of the four external particles have unequal masses 
and ma>mb and mc>md.) In this case, d\ptyi), sin(0*/2), cos(0*/2) have no s112 and s~x type singularities and 
sin(0s/2) —>0(s)1/2 and cos(0s/2) —» 0(1) as s —»0. Therefore, from the crossing relations, (2.7) becomes 

7\cx<aax6' = ^A-,!/2 E B,is,t,u)Ms, cos0), (3.1) 
i 

where / is a function of s and cos0 and is analytic in s at s = 0 , and from (2.7) and the crossing relations we obtain 

i: fermion 

for H . I - (3-2) = S-|X-MI/2 ]T j5y(s,/,#)[Polynomial in s1/2, ^ , ^/2s, and cos0] - • • 
1 or pp's" 

"Lps1'2 or p's^J 

For the sake of simplicity, we consider only the rj = 0 case in the following15: Then16 

T^UMH-S-1^112 E £y(s,*,«)[Polynomial in s and cos0] 

X ( l or pp's) for BB->BB, 

[ > - {ma-mh)
2Jt2T^d^ = s-^-^2 £ Bj(s,t,u)[Polynomial in * and cos0] 

3 

X ( l or pp's) for JF7?_> BB, (3.3) 

[ 5 - ( fM. -« t )
, ] 1 / »[5- (w<!-w(i)

2]1/2rxcx(i,x0xs' = ^-lx-' 'l /2 Z 5y(5,<>«)[Polynomial in 5 and cosfl] 
i 

X ( l or pp's) for FF-+FF, 
since 

H [ 2 ^ 2 ( ^ ° + m , 0 ] 1 / 2 ^ ^ for FF-+BB 
i: fermion 

= {W+ma^-mh){W^mc+md)ls-(ma-mbfJi\s-(mc-mdyji,i for FF-+FF, 

and since vDiUu'Oiu', etc., do not have poles at FF=s1 / 2= — («„+»! , ) and W= — (mc+md). 
For BF - • Si?, 

p s 1 ^ ^ ^ ) ] ' ^ ' ^ ^ ^ ] ' / ^ ^ ^ 
XC2^/2(/> (°"«.0]1 / 2+HC2^ / 2(/ 'aO+»«)]1 / 2[2-v1 / 2(/ 'c

o+mc)]1/2-[251/2(^a
o-wa)]1 '2 

XC251/2(^°-w,..)]1/2} = £(5)+51/20(i-). (3.4) 

16 For the v = 1 case, see Sec. VII. 
16 In the following, B and F stand for bosons and fermions, respectively. 
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Thus17 

^W^XcXd,XaX6
/ = ^~|x~/i|/2 Z Bj(s,t3u)[Polynomial in s and cos0](l or pp's) (3.5a) 

3 

and 
j 1 ' ^ ( * ) r X a x ^ x 6 W ' 2 H x - r t / 2 £ ^ or pp's). (3.5b) 

J 

Therefore, we can find kinematical singularity-free amplitudes if we can separate the terms that contain the factor 
pp's from these that do not contain it. This separation can be made by making use of the threshold behavior of 
partial-wave amplitudes. 

For this purpose, let us consider the parity-conserving helicity amplitudes defined by 

^XcXd)XaX6±=- r x . X d . X a X / i ( ~ l ) X + X - + S c + 5 d - ^c )?^_X < ; - .X d ,X a X 6
/ 

- 2^ i /*2l^ lW*-*l ' 2 £ (2/+l)[^x/+(2)^xcxd )xax/±+^XM J-(2)i7xcxd (xax/T], (3.6) 
J 

where X m =max( |X| , | / / | ) and v is J (or 0) for half-integral / (or for integral / ) . In terms of T±, we can write F 
matrix elements [FfiJ= (Sfi

J-8fi) (U^p'-Wp-W] as 

FXCUMHJ±= ( l ^ - ^ H X H ^ / M X - / ^ J ^ [ . x Z + ^ r x ^ ^ X a X / ^ + ^ X M ^ ^ r X e X ^ X a X ^ ^ ] , 

where 
FK*d.\a*b=MJM;\cMF\JM)\a*b)± 

and 
P|/Jf;X0X5>±==±(-l) J r"1 '1/M;XaX6>± . 

The cx,/+ can be written as linear combinations of the Legendre functions Fj-\m+2vy Pj-\m+2v+2y • • •, Pj+\m-2V 

with constant coefficients.10 The ex*/ - c a n be written as linear combinations of the Legendre functions Pj-\m+2V+h 
Pj-_xm+2^+3, *' *, Pj+\m-2v-\ with constant coefficients.10 For all reactions, e\/+ (e\/~) is an even (odd) function 
of cos# if J + m a x ( | X |, | fx |) — 2v is even and an odd (even) function of cos0 if J + m a x ( | X |, | \x |) — 2v is odd. If we 
assume that 7ia7ib=Vc'0d= 1, then FJ+ is an even (odd) function of both p and p' if J—v is even (odd) and FJ~ is 
an odd (even) function of both p and p' if /—v is even (odd). In the following part of this section, we assume that 
max (| X |, | fi |) - v is even. Therefore, we find for BB-> BB, FF-+BB, and FF -> FF 

^XcXd)XaX&
//+= ^X cXd )XaX6

+ ,C^- (W a — W6)2]1/2J ,xcXdlXaX&+ 

or 

[ > - ( m a - w & ) 2 ] 1 / 2 [ s - (wc—Wd)2]1/2rxexd,x0x6
+=j-«/2 E Bj(s,t,u)[Polynomial in s and cos20] 

3 

X ( l or pp's cosd) (3.7a) 
and 

^XcXd.XoXj"-^ T\e\dt\a\b~, Q?— (ma—mb)22ll2T\c\dt\a\b-
or 

Qs— (wa—w&)2]1/2[s— (wc—w^^TxeXd.Xaxr^1^ -^2 Z £y(^,w) [Polynomial in s and cos20] 
i 

Xipp's or cos0), (3.7b) 
where 

£ = max( |X- /* | , |X+/x | ) . 

Therefore, we have found that the amplitudes (3.7a) and (pp's)X (3.7b) satisfy the Mandelstam representations 
if we neglect possible kinematical singularities at pp's=0 [cos0 contains a factor (ppfs)~l~]. The singularity at 
pp's=0 can be removed by multiplying Eqs. (3.7a) and (3.7b) by (pp's)L±. The L± can be determined from the 
threshold behavior of phase shifts. 

The threshold behavior of FJ± is 
pj± ^ 0(plip'1'). (3.8) 

Let us define p±*=max| J—h\ and p±
f = m&x\J—lf\ for states of 2^ , where k and // are the initial and final 

orbital angular momenta which are compatible with total angular momentum J. Then, we obtain 

L±=max[p± ' ;— \m+2v y p±f—\m+2v, and 0 ] . (3.9) 

17 In deriving Eqs. (3.5a) and (3.5b), properties of E{s)uOiU and 0(s)uO%u have been used. 
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Therefore 
hxcu,K^snpp's)L±TXAdiKH"± (3.10) 

satisfies the Mandelstani representations. 
For BF->BF: [we assume ( - l)x+Xm+Sc+sd~v7jc7]d= 1] 

E(s)rXcxd>ox6'+s1/20(s)r_xc_xrf)xox6
/' = r~r/2 E 2*j(s^«) [Polynomial in s and cos20](l or pp's cosfl), 

3 

E(s)Txc\d!\a\b
f—sll20(s)T-},6-\dy\a\b' = s~t/2 E Bj(s,t,u)[Polynomial in s and cos2ff](pp's or cos#), 

(3.11) 

sll20(s)T\cxdMb'+E(s)T^c-\diMb
f==s-t'12 E Bj(s,t,u)[Polynomial in s and cos20](l or £p's cos#), 

sll20(s)Txe\d}\a\b ~E(s)T-xc-\d,\a\b' == s~t'12 E £;(s,/,^)[Polynomial in s and Q.o%2d~]{ppr s or cos0), 
i 

where18 

f=max( | \—JLI | , |X+/i|—1) 
and 

r = m a x ( | \ - M | - l , |X+/ i | ) . 

Therefore, we find the following four kinematical singularity-free amplitudes: 

s^(pp's)^{E(s)TKUMb'+s^O(s)T^c^dMh'}, (3.12a) 

^(pP's)L~{E(s)ncXdMb'-s^O(s)T-^UMb'}, (3.12b) 

J » ! ( ^ ) ^ { J " ! 0 ( I ) ^ i W ; + £ ( J ) L v l i l W } , (3.12c) 
^''Kpp's)L-{s^O(s)nc^aH'--E(s)T^^iMb'}. (3.12d) 

They are not independent, but Eqs. (3.12a) and (3.12c) are independent. 

IV. ANALYTICITY IN s; SPECIAL CASES The difference between (3.9) and (4.4) comes from the 

In this section we consider the special cases: (i) fact that (3.8) is replaced by 
ma=mb = mc=md} (ii) ma = mc and mb = mdy (iii) pj± _^ Qr^u+iA (45) 
nia^nih and mc=Md. In these cases, the analyticity P->O 
properties of the scattering amplitudes are simpler than [n this case. 
those in the general case. 

A. Boson-Fermion Scattering (ma = mc, mb = md) 
B. BB -> BB and FF - » W (ma = mc, m& = md) 

In this case, (2.7) becomes20,21 

When ma = mc and mb = mdy 0(s) = 2m. Thus, Eq. 
(3.5b) becomes19-20 Txc\d,xaxb' = H Bj(s,t,u)s-ai2 

3 

TxeU+aH^^^112 E £i(*,',*0 X[Polynomial in ^ 2 and cos0], (4.7) 

X [Polynomial in * and cosfl], (4.1) a n d EQ- (3-x) i s s t i 1 1 v a l i d h e r e - Therefore, we find that 

and the amplitude s*-M*(fs)LT^Mb' (4.8) 

$|x-/*!/2(£2y\L2\ ' (4 2) satisfies the Mandelstani representation [L is given by 
Eq. (4.3)]. 

is found to satisfy the Mandelstani representation, 
where C. BB -> BB, FF -> FF, BB <=± FF 

L = m a x [ L + , L _ ] , (4.3) (ma = mb} mc=md) 

L±=m8Lx[_P±-\m+2v, 0 ] , (4.4) In this case, (2.7) becomes21-22 

and , 
2 P ± = m a x | 2J-li-lf\ . (4.5) T*cUM\b = E Bj(s,t,u) 

18 Unfortunately, the author has not been able to prove Eqs. X [Po lynomia l in s1'2 a n d c o s 0 ] . (4.9) 
(3.11) in general. The amplitudes for the reaction ir+p —> K+A 
can be shown to satisfy (3.11), but for other cases (3.11) is only 21 In this case, we do not need to consider the factor 
conjectured. il(pi°+mi)~1/2 since u\'(pc)OiU\(pa) and u\>(pd)OiU\(ph) are 

19 In this case, pa
0=pc°, pb°=pd°, P2=pf2=ppf, and polynomials in pi0, p , p ' , sin(0/2), and cos(6/2). 

cos$ = l+(t/2p2). 2 2In this case, 2pi0=s^2, 4p2=s-4m2, 4p'2=s-4ni'2, and 
20 Here, we assume -q a-r\h=vm = 1. cos0 ~(t—u)/ (typ'). 
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From (3.3) and (4.9) we find 

sS(PP')LTxcxM' (4-10) 

satisfies the Mandelstam representation, where 

L—max[L+,L_], 

L ± =max[p ± *— \ m +2v, p±
f—\m+2v, 0 ] , (4.11) 

and 

£ = 0 if X—fx-\-7] is even in BB—^BB, 
FF->FF 

or if \-fjL+r] is odd in BB<=tFF 
and 
f = l if X-/X+7? is odd in BB-+BB, 

FF-+FF 
or if \~n+rj is even in BB*±FF. 

D. Equal Mass Scattering (ma -=mh = mc = md) 

In this case, (2.7) becomes21 

3 

X [Polynomial in s112 and cosfl]. (4.12) 

From Eqs. (4.1), (4.10), and (4.12) we find the ampli
tude 

s~^LT^d,^ (4.13) 

satisfies the Mandelstam representation, where £ is 
given in the previous subsection and £ = 0 (or 1) if 
X—fi+7] is even (or odd) in BF—+BF. L is given in 
(4.3). 

V. GENERALIZED MACDOWELL RECIPROCITY 

MacDowell has found the following reciprocity 
relation between the partial-wave amplitudes of TTN 
scattering23 

(5.1) 
where 

fi±=exp(i8i±) smdt^/p. 

Making use of the results of the previous sections, 
we can generalize (5.1) for any BF —> BF reaction to24 

Fxexd,Kxb
J+ (W) = - ( - l ) x - ^ x c x „ x 0 x / - ( ~ ^ ) , (5.2) 

where FJ± has been defined in Sec. I l l , 

s1/2Fxeu^b
J±- ( l / 4 x ) 2 ~ l ^ l / 2 ~ l ^ l / 2 

X / dz[c\/+l\c\d,\a\b
±+cx/~Txc\d>\a\b

f~l' 

23 S. W. MacDowell, Phys. Rev. 116, 774 (1959). 
24 If ma=mb=mc=md, the factor (— l)x~^ in (5.2) and (5.3) 

should be replaced by (— 1) *+/*+?. For vector-spinor scattering, 
the relations FJ+(W) = — FJ~(—W) have been obtained in Ref. 
10. However, the factor (—l)x~^ is necessary if we use the phase 
factor of Jacob and Wick (Ref. 2). 

Since 

and25 

T±cc T\c\d,\a\bdzT-.\c-\d,\a\b
f, 

-X c—Xd.X ^'(-W)=-(-l)^T^XM'(W), (5.3) 

we can easily obtain (5.2) for BF —> BF reactions. 
For other reactions, 

\FJ±(W)\ = \FJH-W)\. 

VI. HIGH-ENERGY LIMIT OF HELICITY 
AMPLITUDES 

Froissart has shown26,27 that the scattering ampli
tudes of spinless particles have upper bounds at the 
high-energy limit, 

and 
| r | < ( c o n s t > ( l m ) 2 for z = ± l (6.1) 

| r | < ( c o n s t ) ^ 4 ( l m ) 3 / 2 for - 1 < * < 1 (6.2) 

on the assumption that T satisfies the Mandelstam 
representation. 

I t was recognized later by Greenberg and Low28 and 
by Martin29 that it is not necessary to make use of the 
full analyticity assumed in the Mandelstam represen
tation to obtain the bounds (6.1) and (6.2). I t is 
sufficient to assume that T be analytic in an ellipse E. 

Kinoshita, Loerlel, and Martin30 have improved (6.2) 
and replaced it by 

| r [<cons t ( l iu ) 8 ' 2 for - 1 < S < 1 , 

assuming more analyticity than was needed in the Refs. 
28 and 29, but less than was used by Froissart. 

For the asymptotic behavior of the scattering ampli
tudes for particles with any spin, Yamamoto has shown31 

that they satisfy the Froissart limit. However, his proof 
does not cover the most general case, and is somewhat 
complicated. Therefore, we have decided to give a 
general and simple proof using helicity amplitudes. 

In Sec. I I we have found that if the analyticity 
properties of helicity amplitudes are assumed to be 
correctly predicted by perturbation theory, 

n ^ , x a x 6 ' = [ 2 1 ' 2 c o s ( 9 / 2 ) ] - l ^ l 

X[2" 2 sin(0/2)]-l^lZ\.x,.A.x» (6.3) 

is analytic in the cos# plane with cuts on the real axis 
(__oo? — 1—a) and (1+/3, °°), where a and p are real 
positive and approaches 2um{n/s and 2tmin/s at the 
high-energy limit (s—•> <*>), respectively. However, for 

25 For BF -+BF, (~1)2^= - 1 . 
26 The proof in this section has been carried out in collaboration 

with Dr. Louis Balazs. 
27 M. Froissart, Phys. Rev. 123, 1053 (1961). 
28 O. W. Greenberg and F. E. Low, Phys. Rev. 124, 2047 (1961). 
29 A. W. Martin, Phys. Rev. 129, 1432 (1963). 
30 T. Kinoshita, J. J. Loeffel, and A. Martin, Phys. Rev. Letters 

10, 460 (1963). 
31 K. Yamamoto, Nuovo Cimento 27, 1277 (1963). 
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our proof, we need a weaker condition, namely, that V 
is analytic in an ellipse (E) with foci at —1 and 1 and 
with semiaxes a and (a2—1)1/2, where a=min(a,0) . 

From (6.3), we find 

Txexd,xaxb(W,z=l) = 0 for X - / z ^ 0 
and (6.4) 

Txcxd,xaxb(Wyz=~l)=^0 for X + M ^ O 

since V is finite at |z\ = 1. 
Since10 

Txexd,xaxb
f(W,z) = 2^2 E (2J+l)F\cXdtXaX/(W) 

j 

tt^.x.x/W 

and 

A S ) 
1 ri 

4TT^/2 J _ I 

Xex/(«) , 

X«X5(W
/',2) , 

T\e\d,\a\*{W,z) = —; (h dzf 

2iri J along ellipse E 

X-
^XeXd.XaXfc'C^,^) 

for 2 in E, 
2 — 2 

we obtain 

S-KHS1'2 JE 

r1 cx/(z) 
X " * ;i dzv 

= ® dz'T\e\d,\a\b'(W,Zf 

4TTW 2 . / * 

functions, we find32 

I C x / ( z ) | B U«<const(/)- I '»(l - l /«*)-V- ' -» . 

Therefore, we find 

\Fxcxd,xax/(W)\<Rf(W)J~^u^, 

where R!(W) is a polynomial in W. From the unitarity 
of the 5 matrix, we know that 

\FWaxb
J(W)\<(pp')-UK 

If we use the results of Ref. 10, we find 

| ( ( l + 2 ) / V 2 ) l ^ l ' 2 ( ( l - Z ) M ) l ^ l / 2 n c X , , x a x t ( ^ Z ) | 

= 2TS^ I £ ( 2 / + l ) F X c x d , x 0 x / W c x / ( z ) | 
j 

< (const)*1'2 £ ( 2 / + 1 ) | F x . x , . x . x / W | 

X/>(*) , (6.5) 

//(D = l 

/ / (*) -> /(2)/-^1/2 for — 1 < « < 1 . 

where 

and 

XCx/(V>, 

where we can write c and C in the form 

J+Xm— 2v 

cx/ (2) = S &X/J'PJ< (2) , 
/~Xm-f-2t> 

and 

C x / ( 2 ) = L a x / J ' Q H s ) , 

where the a are constants. Thus, we obtain 

1 
I FxeXd,Xax/(W) I < 1 T\c\dt\a\b'(W9z) I max on E 

4TTV/2 

X I Cx/ (2) I max on E L , 

where L is the length of the path along the ellipse E. 

L<2Za+(a2-l)V2~]=2u7 

u -> 1 + ( c o n s t / ^ 2 ) > 1 . 

We assume that | V (W,z) | max is bounded by a poly
nomial in W, Ri(W). From the properties of Legendre 

From (6.4) and (6.5), we find 

I Txcxd,xaxb(z) | < const Xs (Ins)2 for 2= ± 1 
and 

Incxd,xax&(2)|<consU3/4(lm)3/2 for - 1 < 2 < 1 . 

VII. SUMMARY 

In this section, a list of kinematical singularity-free 
amplitudes hxexd,xaxb, is given. The properties used are 
as follows: (i) the analyticity properties of scattering 
amplitudes, assuming that these are correctly predicted 
by perturbation theory; (ii) the crossing relations of 
helicity amplitudes near s—0; (hi) the threshold be
havior of partial-wave amplitudes.33 

In the following 

r^.x.x» '=Ccos(f l /2)3-l^l[s in( tf /2)3-l^irx.x, .x .x», 

(X=Xa—X& and /*=XC—X<j). 

Case I. ma—mb~inc=ind~in 

(i) BB - > B B , FF -> FF, and BF ~> BF. 

W d . X a X b ^ ^ ' 2 ^ — ^ ^ ^ X c X r f . X a X j ' , 
where 

£ —0 if X—fx+7] is even, 

£—1 if X—/x+17 is odd. 

(ii) BB+±FF. 

fecXd,XaX6=^^/2(^-4w2)L^xcxd,xax6
/, 

82 E. T. Whittaker and G. N. Watson, Modern Analysis (Cam
bridge University Press, New York, 1927), 4th ed., p. 322. 

33 This assumption may be replaced by the crossing relations 
near p=0 and ^'=0. 
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TABLE I. The a± and {3±. 

rjaVb 

+ 
+ 
+ 

+ 

—-

— 

-

-

Vend 

+ 
+ 
— 

— 

+ 

+ 

-

-

max(|X|,|/i|)-» 

even 
odd 

even 

odd 

even 

odd 

even 

odd 

L+ 

even 
odd 
even 

odd 

even 

odd 

even 

odd 

even 

odd 

odd 

even 

a+ 

0 
0 
0 

1 

1 

0 

1 

0 

0 

1 

0 

0 

p+ 
0 
0 
1 

0 

0 

1 

0 

1 

1 

0 

0 

0 

L-
odd " 
even 
even 

odd 

even 

odd 

even 

odd 

even 

odd 

even 

odd 

QJ_ 

0 
0 
1 

0 

0 

1 

0 

1 

1 

0 

0 

0 

_/3-_ 

0 
0 
0 

1 

1 

0 

1 

0 

0 

1 

0 

0 

where 
£ = 0 if X—fjL+rj is odd, 
£ = 1 if X—JJL+7] is even. 

Case II. m a =m c , nib=nid, VaVb^VcVd 

BB -> BB, FF —> FF, and BF -» BF. 

fecXd,X0X6=^|X-/i|/2(^)Ln^,XaXb^ 

Case III. ma=Mbimc=md 

(i) BB -> BB and FF -> FF. 

where 
£=G if X—ix+rj is even, 

£=1 if X—/x+77 is odd. 

(ii) BB^FF. 

Ku^a^b=^~m(PPf)LT},c\di\axb
/, 

where 
£=0 if X—fA+rj is odd, 

£=1 if X—fx+rj is even. 

Case IV. General Case 

Any two of the w/s are not equal and ma>fnj) and 
mc><ma. 

(i) BB -> 5 5 , 5 5 <=> i ^ , and FF -> FF. 

We define rxcxd>xax6'
/:±: as 

cXd»X0X{> 

•* X cXrf,XaX6 

where 

"±=^ 

for BB-+BB, 

[s— (wa~-w6)
2]1/2rxcxd,xax6

± 

for FF->BB, 

\j— ( w a - « 6 ) 2 ] 1 / 2 [ 5 - (Wc-Wd)2]1/2 

rx.XrfW for FF-+FF, 

rxaxi.x.xk
±= rx.x*x.x»'± (~ l ) x + S c ^ ( - l)'<+«*-' 

X i —Xc—X<i,X0X6 • 

Then 

fecx^0x6=^/2(^^ 
where 

£=max(|X—/i|,|\+/*|) 

and a± and /3± are given in Table I, and L± are given 
by Eq. (3.9). 

(ii) BF->BF. 

We define r x ^ . x ^ 0 (i= 1, 2, 3, and 4) as 

x̂cxdA.Xfc(1) = £(^)rxcxdix.X5,+^1/20(^)vr_x<r-xd,x.Xi/, 

^ X c X d A o X 6 ( 2 ) = ^W^XcXd,XaX6
/-«y1/20(^)^r_xc--Xd,XoX&

/, 

^xcxd,XaX&
(3)==«y1/20(^)rxcxd)XaX6/+-E(<y)^r_xc-x{i)xox6

/, 

rxflxi.x^fc
w = ^/aOWrx.xlI(x^6/-£Wi'21-xr-xd,xtfxfc

/
l 

where £(j) and sm0(s) are defined in (3.4) and 
v= (-l)x+*m+8c+sd-vricr)d. Then, 

A X e X ^ X a X ^ ^ C P ^ ^ ^ ^ - ^ V ^ ^ r W , 

Axf lx,,xax6=^' /2(?^)^(pJ1/2)a+(pV/2)^rw, 

Ax cx, ,x0x5=^ , / 2(^)L-(M2) a-(^1 / 2)^^ ( 4 ) , 
where 

and 
f=max( |X-M | , |X+/x | - l ) , 

r = m a x ( | X ~ M | - l , |X+/x|), 

and a± and /3± are given in Table I, and L± are given 
by Eq. (3.9). 
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